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Abstract21

Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric 22

process models including Large Eddy Simulations (LES), Cloud Resolving Models 23

(CRMs) and Single-Column Models (SCMs), and impact the development of physical 24

parameterizations in global climate models.  This study describes the development of an 25

ensemble variationally constrained objective analysis of atmospheric large-scale forcing 26

data and its application to evaluate the cloud biases in the Community Atmospheric 27

Model (CAM5). Sensitivities of the variational objective analysis to background data, 28

error covariance matrix and constraint variables are described and used to quantify the 29

uncertainties in the large-scale forcing data.  Application of the ensemble forcing in the 30

CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great 31

Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows 32

systematic biases in the model simulations that cannot be explained by the uncertainty of 33

large-scale forcing data, which points to the deficiencies of physical parameterizations.  34

The SCM is shown to overestimate high clouds and underestimate low clouds.  These 35

biases are found to also exist in the global simulation of CAM5 when it is compared with 36

satellite data. 37

38



1. Introduction39

Large-Eddy Simulations (LES) [e.g. Khairoutdinov and Kogan, 2000; Zhang et 40

al., 2012], Cloud-Resolving Models (CRM)[e.g. Khairoutdinov and Randall, 2003; Xu et 41

al., 2002], and Single-Column Models (SCM) [e.g. Del Genio et al., 2005; Xie et al., 42

2002; Xie et al., 2005] are important tools to develop and test physical parameterizations43

used in General Circulation Models (GCM) such as convections, turbulence, cloud44

microphysics and macrophysics.  In these models, the large-scale dynamics are specified 45

as the forcing terms to drive the physics. These forcing fields include vertical velocity 46

and horizontal advective tendencies of temperature and moisture.  To compare47

LES/CRM/SCM simulations with observations and to attribute model errors to 48

deficiencies in physical parameterizations, accurate large-scale forcing data are needed. 49

Many objective analysis methods in the past have been carefully designed to 50

derive large-scale forcing data from atmospheric sounding measurements [e.g. Lin and 51

Johnson, 1996; Ooyama, 1987].  One widely used method is the constrained variational 52

analysis algorithm (hereafter 1DCVA) developed by Zhang and Lin [1997]. Comparing53

to other conventional objective analysis methods, the unique feature of the 1DCVA is the54

use of surface and TOA observations as constraints to adjust atmospheric state variables 55

from sounding measurements by the smallest possible amount to conserve column-56

integrated mass, moisture, dry static energy and momentum so that the final analysis data 57

set is dynamically and thermodynamically consistent. This method has been used in the 58

Atmospheric Radiation Measurement (ARM) program and several other field campaigns 59

[Schumacher et al., 2007; Schumacher et al., 2008; Xie et al., 2005; e.g. Xie et al., 2006; 60

Xie et al., 2010a]. Recently, Tang and Zhang [2015] extended the 1DCVA algorithm 61



into a three-dimensional Constrained Variational Analysis (hereafter 3DCVA) at higher 62

horizontal resolutions and introduced additional features to improve the data quality.  The 63

new 3DCVA derives large-scale forcing data in each grid of a certain domain 64

simultaneously, and all spatial grids are interacted with each other through advections.65

This paper is a follow-up of Tang and Zhang [2015]. Because of the inevitable 66

uncertainties in the input data and objective algorithms, and because of the large 67

sensitivity of model results to the forcing data [Hack and Pedretti, 2000; Hume and 68

Jakob, 2005], it is necessary to quantify and understand the uncertainties in the derived 69

large-scale forcing data. The purpose of this paper is to introduce an ensemble approach 70

of 3DCVA and quantify the data uncertainties by analyzing the sensitivity of the forcing 71

data to the background data of the atmospheric state variables, the specification of the 72

error covariance matrix, and the constrained variables, which are required by 3DCVA.  73

The ensemble forcing data enable us to more confidently attribute errors in the 74

LES/CRM/SCM to physical sources when their simulated results are compared with 75

observations. We will show the applications of using the ensemble forcing data to 76

evaluate the simulated clouds in the Community Atmospheric Model (CAM5).  Clouds 77

represent one of the largest uncertainties in current GCM simulations.  Cloud simulations78

are found to have large discrepancies from satellite- and ground- based observations.  79

Zhang et al. [2005] found that the majority of ten GCMs only simulated 30% to 40% of 80

the observed middle clouds and half of them underestimate low clouds comparing to 81

satellite cloud analysis from ISCCP (International Satellite Cloud Climatology Project)82

and CERES (Cloud and the Earth’s Radiant Energy System).  Xie et al. [2005] evaluated 83

9 SCMs and 4 CRMs using ARM Baseline Microphysical Retrieval (MICROBASE)84



ground measurements for a mid-latitude cyclone system, and found that the models 85

generally captured the bulk characteristics of frontal clouds but differed significantly in 86

the detailed structures.  Klein et al. [2009] compared the simulations from 17 SCMs and 87

9 CRMs for an Arctic mixed phase cloud case.  They found that the median simulated 88

liquid water path (LWP) is about one-third of the observed value, and the spread among 89

models are quite significant due to different physical schemes.  Jiang et al. [2012]90

examined 19 CMIP5 (Coupled Model Intercomparison Project phase 5) models and 91

found that both model-observation difference and model spread are large especially at the 92

upper troposphere levels.  Although the model discrepancies are mainly attributed to93

cloud parameterization errors other than to large-scale errors [e.g. Su et al., 2013], it is 94

unclear how the physical parameterization and the large-scale atmospheric circulation 95

each contribute to the model errors.  Moreover, the uncertainties of cloud retrievals from 96

different measurements and different retrieval algorithms are also large enough to affect 97

the evaluation of model results [Huang et al., 2012; Zhao et al., 2012].  With the 98

uncertainty of large-scale dynamics and observations specified, we can better attribute the 99

source of model biases.100

The rest of the paper is organized as follows: Section 2 describes the method of 101

ensemble 3DCVA and data used in the method.  Section 3 shows the ensemble mean 102

features of large-scale forcing data for one selected case and the sensitivities due to 103

different background data, error covariance matrix and constraint variables.  Section 4104

shows the sensitivities of SCM simulations due to large-scale forcing data and provides 105

an example of cloud bias evaluation and error source diagnosis. Summary and discussion106

are given in Section 5.107



108

2. Method, Data and Model109

As described in Tang and Zhang [2015], the 3DCVA follows the general idea of 110

1DCVA [Zhang and Lin, 1997] that the atmospheric state variables (refers as background 111

data hereafter) u, v, q and s are adjusted by minimizing the following cost function:112

113

(1)
114

and satisfying the column-integrated conservation of mass, moisture and energy115

simultaneously across all spatial grids in the model domain: 116
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In addition, it adds the extra radiative constraints: 120
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at each level above observed cloud top (or a specified level when observed cloud top is 122

low or absent) to physically reduce the spurious heating and cooling centers that are often 123

seen near tropopause in both conventional objective analysis methods and 3DCVA.  In 124

the cost function Eq. (1), u, v, q, s are column vectors of horizontal winds, water vapor 125
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mixing ratio and dry static energy ( , where is heat capacity of air at 126

constant pressure) for all grids in each time step.  The superscript T denotes the transpose 127

of a vector, the subscript o denotes the initial state, and B represents error covariance 128

matrix for each state variable.  In the constraint equations (2)-(5), the bracket represents 129

vertical integration from the surface to the top of atmosphere (TOA), sE is surface 130

evaporation, recP is surface precipitation, Lv is the latent heat of vaporization, lq is cloud 131

liquid water content, TOAR and SRFR are net downward radiation at TOA and at surface, 132

SH is surface sensible heat flux, ω is vertical velocity in pressure coordinate, and radQ is 133

radiative heating rate calculated by the Rapid Radiative Transfer Model for GCMs.  134

Other variables are as commonly used in meteorology.  135

The details of 3DCVA are described in Tang and Zhang [2015].  Here we136

highlight three sources of uncertainties (refers as elements hereafter) that impact the 137

accuracy of 3DCVA results: background data, error covariance matrix and constraint 138

variables.  Background data are the first guess of the 3DCVA; all the adjustments are 139

based on the original background data.  Error covariance matrix, which is represented by 140

B in Eq. (1), determines how the background data are adjusted spatially.  Constraint 141

variables, which are the right-hand-side terms of the constraint equations Eq. (2)-(5),142

control the budget of the whole system.  Previous studies [Xie et al., 2004; Zhang et al., 143

2001] have shown that precipitation is the dominant constraint variables during rainy144

periods.  In this study, we run 3DCVA using different combinations from six background 145

data, five error covariance matrices and three precipitation estimates (Table 1, details 146

described below) to analyze the uncertainties in the derived forcing fields. 147

ps C T gz  pC



Background data RUC,  ERA-interim,  CFSR,  JRA55,  MERRA,  NARR (details see 
Table 2)

Error covariance 
matrix

Calculated from variance of time series, only auto correlation. 

Calculated from variance of ensemble members, only auto correlation.  

Calculated from variance of ensemble members, vertical correlation.  

Calculated from variance of ensemble members, horizontal correlation.  

Calculated from variance of ensemble members, horizontal and vertical 
correlation.  

Constraint 
variables

Arkansas-Red Basin River Forecast Center (ABRFC) gridded 

precipitation products 

Upper bound: 1.4 × ABRFC precip amount

Lower bound: 0.6 × ABRFC precip amount

Table 1: different background data, error covariance matrix and constraint variables used in148
ensemble 3DCVA.149

150

Name Data Assimilation Assimilation 
Intervals

Model 
Resolution 

Model 
Vertical 

levels 
ERA-interim

Dee et al., 2011
4DVAR 12 hour T255

(79km×79km)
60

CFSR
Saha et al., 2010

3DVAR with flow 
dependence error 

variance
6 hour

T382
(38km×38km) 64 

MERRA
Rienecker et al., 2011

3DVAR with 
incremental analysis 

update (IAU)
6 hour 1/2° × 2/3° 72 

JRA55
Kobayashi et al., 2015

4DVAR 6 hour TL319
(55km×55km)

60 

NARR
Mesinger et al., 2006

3DVAR with 
precipitation 
assimilated

3 hour 32km×32km 45 

RUC
Benjamin et al., 2004

3DVAR 1 hour 40km×40km 40 

Table 2: the six background data used in the ensemble 3DCVA.  All datasets are interpolated into 151
0.5°×0.5° horizontal resolution, 27 vertical levels from 1000hPa to 100hPa and 3-hourly time 152
resolution.153

154



The six background data are obtained from reanalysis/analysis products listed in 155

Table 2. They are linearly interpolated into 0.5°×0.5° horizontal resolution, 3-hourly 156

time resolution and 27 vertical levels from 1000 hPa to 100 hPa.  Most of the constraint 157

variables are derived from ARM surface station measurements, which include the 158

following datasets:159

 Surface Meteorological Observation Stations (SMOS) measuring precipitation, 160

pressure, winds, temperature, and relative humidity at the surface.161

 Energy Budget Bowen Ratio (EBBR) stations measuring surface latent and 162

sensible heat fluxes and surface broadband net radiative flux.163

 Eddy Correlation Flux Measurement System (ECOR) providing in situ half-hour 164

averages of the surface vertical fluxes of momentum, sensible heat flux, and latent 165

heat flux.166

 Oklahoma and Kansas mesonet stations (OKM and KAM) measuring surface 167

precipitation, pressure, winds, and temperature.168

 Microwave Radiometer (MWR) stations measuring the column precipitable water 169

and total cloud liquid water.170

These surface measurements are interpolated into 0.5°×0.5° horizontal resolution 171

covering the SGP domain.  If there are actual measurements within the 0.5°×0.5° grid 172

box, simple arithmetic averaging is used to obtain the value for that grid box.  Under 173

circumstances that multiple instruments observe the same quantities, their measurements174

are merged in the arithmetic averaging process with a weighting function depending on 175

their quality. If there is no actual measurement in the grid box, the Barnes scheme 176

[Barnes, 1964] is used with the length scale of Lx=50km, Ly=50km, and Lt=6hr to fill the 177



missing grid box.  The satellite measurements of radiative fluxes and cloud top pressure 178

are available at NASA Langley [Minnis et al., 2008] measured by the Geostationary 179

Operational Environment Satellite 8 (GOES8) in 0.5°×0.5° grid box.  The precipitation 180

rate data is obtained from the 4-km resolution gridded precipitation products from 181

Arkansas-Red Basin River Forecast Center (ABRFC) based on WSD-88 rain radar and 182

gauge measurements, and is averaged into 0.5°×0.5° horizontal resolution and 3-hourly 183

time resolution. The spatial distribution of the surface and TOA measurements used in 184

this study are shown in Figure 1.185

186

Figure 1: Analyzed SGP domain and surface/TOA observations.  Different marks show different 187

instruments.  Gray lines show 0.5°× 0.5° grids in 3DCVA which are the same as grids of GOES 188

satellite products (black dots).  Black line at 37°N indicates the boundary between Oklahoma 189

(below) and Kansas (above).190

191

Surface and TOA measurements of constraint variables contain errors from 192

instrument uncertainties, assumptions and limitations in the retrieval algorithms, and193
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interpolation from stations to regular grids. As shown in Xie et al. [2004], precipitation is 194

the most dominant constraint during precipitation periods.  In this study, we will focus on 195

the impact of precipitation uncertainties on the derived large-scale forcing data.196

Following Xie et al. [2014], we consider a 40% fractional root-mean-square error (RMSE) 197

for ABRFC rainfall products, and use the estimated rain rate, the upper bound (1.4 times 198

estimated rain rate), and the lower bound (0.6 times estimated rain rate) of the uncertainty 199

to form the ensemble members.  The 40% uncertainty is only considered on the 200

magnitude of the rain rate.201

We have two methods to calculate the error covariance matrix.  One method is the 202

original algorithm [Zhang and Lin, 1997; Zhang et al., 2001] in 1DCVA, which 203

calculates the covariance from the variance of time series of the background data plus 204

instrument and measurement uncertainties with no correlation.  The other method is 205

described in Tang and Zhang [2015] which calculates the covariance by using the 206

anomaly of different background data relative to their ensemble mean.  In this method, 207

we can have the different correlation types of no correlation, vertical correlation only, 208

horizontal correlation only, and both horizontal and vertical correlations in which 209

adjustments of each grid point will have different correlations to its surrounding grids and 210

levels.  In total we can have five error covariance matrices to run the ensemble 3DCVA.  211

Combining 6 background fields, 3 precipitation rates (representing constraint variables),212

and 5 covariance matrices, we therefore have a total of 90 3DCVA ensemble members.213

A SCM version of CAM5 (SCAM5) is used to test the impact of uncertainties in 214

the large-scale forcing data.  CAM5 is the latest version of the NSF/DOE Community 215

Atmospheric Model developed at the Nation Center for Atmospheric Research (NCAR), 216



which contains a range of significant enhancements in the representation of moist 217

physical processes relative to its predecessors [Neale et al., 2012]. These include: (1) a 218

turbulent kinetic energy (TKE) based boundary layer scheme that can explicitly simulate 219

stratus-radiation-boundary layer interactions [Bretherton and Park, 2009]; (2) a new 220

shallow convection scheme combined with the above boundary layer scheme [Park and 221

Bretherton, 2009]; and (3) a new bulk two-moment cloud microphysics scheme for 222

stratiform-clouds [Morrison and Gettelman, 2008] that predicts both mixing ratios and 223

number concentrations of cloud droplets (liquid) and crystals (ice). CAM5 is part of the 224

Community Earth System Model (CESM) that has been used in Phase 5 of the Coupled 225

Model Intercomparison Project (CMIP5). 226

The observed cloud properties used to evaluate the SCAM5 simulations are 227

obtained from ARM Baseline Microphysical Retrieval (MICROBASE) which is a cloud 228

retrieval product combining multiple measurements from cloud radar, lidar, ceilometer, 229

microwave radiometer and soundings.  Other variables such as liquid water path (LWP) 230

and radiative fluxes are obtained from ARM Best Estimate (ARMBE) products [Xie et al., 231

2010b] at SGP central facility.  We average these data into 3-hour intervals in order to 232

compare with SCAM5 simulations.233

The satellite retrievals used to evaluate the CAM5 GCM results is the merged 234

CALIPSO, CloudSat, CERES, and MODIS product C3M [Kato et al., 2011].  It has 235

global coverage from July 2006 to June 2010 for 4 years. Cloud fraction in this product 236

is obtained from CALIPSO data with CloudSat clouds assigned into CALIPSO bins.  237

Liquid water content (LWC) and ice water content (IWC) are derived from the radar-only 238

algorithm from CloudSat and normalized by LWP from MODIS measurements.239



240

3. Ensemble Constrained Variational Analysis of Large-Scale Forcing Data241

3.1 Ensemble mean242

The ARM March 2000 Intensive Operational Period (IOP) at the Southern Great 243

Plains (SGP) is used in this study.  This IOP contains several precipitation events with 244

various types of clouds, which has been extensively examined in earlier process studies 245

[e.g. Xie et al., 2005; Xu et al., 2005].  The 3D structure of a mid-latitude cyclone case on246

3 March has been analyzed by Tang and Zhang [2015]. Here we emphasize the SGP 247

domain averaged large-scale forcing data during the whole IOP. The SGP domain in this 248

study is following the domain used in Tang and Zhang [2015], which is a rectangle 249

domain from 34.5-39°N, 95-100°W, with 0.5°×0.5° horizontal resolution shown in 250

Figure 1.251

Figure 2 shows the domain averaged ensemble mean analyzed u, v, q, s from the 252

ensemble 3DCVA, and the domain averaged ensemble mean adjustments for each 253

variable.  The domain mean adjustments of horizontal winds are smaller than 0.5 m s-1, 254

but the standard deviation of adjustments on horizontal grids (not shown) are in the 255

magnitude of 1 m s-1, indicating that the winds adjustments have compensatory effects256

horizontally, which brings large change to the divergence and advections.  The average257

adjustment of q is generally smaller than 0.5 g kg-1, except for one low-level point at 18Z 258

on 4 March. Adjustments of s have a diurnal cycle with warm adjustments of ~0.3K in 259

the daytime and cold adjustments of ~0.1K in the nighttime.  The periodic feature of s260

adjustments indicates the inconsistency of diurnal cycle in the background data and in the 261



column energy budget, which may due to the unrealistic simulations of diurnal cycle in 262

reanalysis/analysis models.  The domain averaged adjustment of q and s has a similar 263

magnitude to the standard deviation of adjustments on horizontal grids (not shown).  264

265

Figure 2: (left) SGP domain averaged ensemble mean horizontal winds, moisture and dry static 266

energy (u, v, q, s) and (right) SGP domain averaged adjustments of u, v, q, s.267

268



Figure 3 shows the domain averaged precipitation and ensemble mean 269

temperature, moisture, vertical velocity (omega), as well as horizontal and vertical 270

advections of q and s, which are key variables of the large-scale forcing data. The 271

precipitation occurs on 2-3 March, 8 March, 11March, and 16-19 March, separately.  The 272

rising motion and advections of q and s correspond well with these events.  The general 273

patterns are also consistent with forcing data derived from 1DCVA (not shown), which 274

uses the same source of constraint variables within a slightly smaller domain at SGP.  In 275

the next section, we will discuss the impact of the three elements of ensemble 3DCVA on276

the analyzed large-scale forcing data.277

278

(a) (b)

(c) (d)

(e) (f)

(g) (h)



Figure 3: (a) SGP domain averaged precipitation and domain averaged ensemble mean profiles of 279

(b) temperature, (c) water vapor mixing ratio, (d) vertical velocity, (e – h) horizontal and vertical 280

advections of q and s. 281

282

3.2 Analysis of sensitivity and uncertainty 283

To understand the sensitivities of large-scale forcing data to different elements in 284

3DCVA, we calculated the standard deviations of large-scale forcing data due to different 285

background data, error covariance matrices and precipitation rates (Figure 4).  For each286

one element (such as background data), we average the large-scale forcing data over the 287

other two elements (such as error covariance matrix and precipitation rate).   The 288

magnitude of standard deviation of temperature and water vapor mixing ratio is generally 289

smaller than 2K and 1g kg-1, respectively; the magnitude of vertical velocity and 290

advective tendencies of q and s are around 0.2Pa s-1, 5g kg-1 day-1, and 10K day-1, 291

respectively.  The relative uncertainties of vertical velocity and advective tendencies are 292

much larger than the relative uncertainties of temperature and moisture.  The standard 293

deviation due to different background data is larger than that due to error covariance and 294

precipitation in most of time, indicating the importance of the initial first guess to the 295

final forcing data.  For uncertainties due to precipitation, horizontal moisture advection 296

has much larger uncertainty than other variables, which indicates tight relationship 297

between the horizontal moisture advection and precipitation process.298

299

300

301



302

Figure 4: the standard deviations of large-scale forcing data (from top to bottom: T, q, ω, 303

horizontal and vertical advections of q and s) to different background data (left), error covariance 304

matrices (middle) and precipitation rates (right).305



To investigate the overall uncertainties of large-scale forcing data due to all the 306

three elements, we define the relative 1-sigma uncertainty as the standard deviation of the 307

90 ensemble members divided by the temporal standard deviation of the ensemble mean 308

fields. As shown in Table 3, during the whole IOP, the domain mean 1-sigma uncertainty309

is about 1.5% for temperature and 5.6% for vapor mixing ratio.  If we separate it into 310

precipitation periods and non-precipitation periods, the 1-sigma uncertainty in 311

temperature (water vapor mixing ratio) is 1.6% (6.3%) for precipitation periods and 1.4%312

(4.9%) for non-precipitation periods.  For the analyzed forcing fields, the mean 1-sigma 313

uncertainty in vertical velocity and advective tendencies of q and s is 21.6%, 24.9% and 314

27.0% for the whole IOP, 26.7%, 32.5% and 31.9% for precipitation periods, and 16.7%, 315

17.6% and 22.4% for non-precipitation periods, respectively.  It is clear that these large-316

scale forcing data are more uncertain during precipitation periods than during non-317

precipitation period.  318

319

Temperature Water Vapor 

Mixing Ratio 

Vertical 

Velocity

Advections 

of q

Advections 

of s

Whole 

IOP 1.5% 5.6% 21.6% 24.9% 27.0%

Precip 1.6% 6.3% 26.7% 32.5% 31.9%

Non-

precip 1.4% 4.9% 16.7% 17.6% 22.4%

320

Table 3: The 1-sigma uncertainties of large-scale forcing data due to all different elements.  For 321

advections of q and advections of s, the uncertainty is the average of the uncertainties of 322

horizontal and vertical advections.323



The vertical profiles of these large-scale forcing data averaged over the 324

precipitation period and non-precipitation period and their standard deviations are shown 325

in Figure 5.  There are significant differences between vertical profiles of the 326

precipitation period and non-precipitation period.  During the precipitation period, it has 327

lower temperature and higher moisture at lower level. The vertical velocity shows rising 328

motion throughout the whole troposphere during the precipitation period while sinking 329

motion during the non-precipitation period, which contributes to opposite signs in vertical 330

advections of q and s.  Advections of s at upper-levels have larger sensitivities than at 331

mid- and low-levels, which may be related to the relatively larger gradient of s at the 332

tropopause.   333

334



335

Figure 5: Ensemble mean vertical profiles of (up): temperature, vapor mixing ratio, vertical 336

velocity, (middle): horizontal and vertical advection of q and (bottom): horizontal and vertical 337

advection of s averaged for precipitation period (blue) and non-precipitation period (red).  The 338

time-mean standard deviations are shown in shade.339



340

4. Application of Ensemble Forcing Data on Evaluating Cloud Bias in CAM5341

4.1 Sensitivity of SCM simulations 342

We next analyze the sensitivity of SCM simulations to different elements in the 343

large-scale forcing data.  Here we run SCAM5 using each member of the ensemble large-344

scale forcing data (SGP domain mean), restarting at 15Z every day from 1 March to 19 345

March for 36 hours without relaxation, and choose the hour 9 to 33 of the simulations 346

(00Z to 24Z of the next day) to test the sensitivities of model results to different 347

background data, error covariance matrices and constraint variables.  Surface sensible 348

and latent heat fluxes are prescribed from the forcing data.        349

The time-pressure cross sections of the ensemble mean simulated cloud fraction, 350

liquid water content (LWC) and ice water content (IWC) are shown in Figure 6 (left). 351

Also shown in the figure are the observations obtained from MICROBASE during this 352

period (right).  Note that the model IWC in this study includes both cloud ice and snow 353

since observation does not separate the two.  The models captured most of the major 354

cloud events during the IOP, with good consistency to observations especially in the 355

cloud fraction.  356

357



358

Figure 6: the ensemble average of SCAM5 (left) simulated cloud properties and cloud retrievals 359

from MICROBASE (right).  From top to bottom: cloud fraction, LWC and IWC (model IWC 360

includes both cloud ice and snow).361

362

The standard deviations of simulated cloud fraction, LWC and IWC to different 363

elements of large-scale forcing data are shown in Figure 7.  The uncertainty of cloud 364

properties at some time steps could reach up to more than 50% of simulated values, 365

implying that the amount of the cloud fraction and hydrometeors is sensitive to the 366

initialization of large-scale forcing data.  The mean 1-sigma uncertainty is about 25.9%367

for cloud fraction, 17.6% for LWC and 16.1% for IWC.  Among the three elements in 368

3DCVA, background data are the largest contributor to uncertainties of cloud fraction 369

and LWC, which is similar to the results in the previous section. However, IWC is more 370

SCAM5 MICROBASE



sensitive to the precipitation rather than to the background data.  Further analysis shows 371

that the cloud ice is more sensitive to the background data, but snow, which is much 372

larger than cloud ice mixing ratio, is more sensitive to the precipitation. Overall, 373

different elements in the large-scale forcing data have considerable impacts on SCM374

cloud simulation.375

376

377

Figure 7: the standard deviations of SCAM5 simulated clouds (from top to bottom: cloud fraction, 378

LWC and IWC) due to different background data (left), error covariance matrices (middle) and 379

precipitation (right).380

381

4.2 Evaluation of model biases using ensemble simulations382

In SCMs, model errors come from two sources: deficiencies in physical 383

parameterizations and uncertainties in large-scale forcing data.  By considering 384



uncertainties in both large-scale forcing data and observed validation data, we can better 385

identify the source of model bias (discrepancy between models and observations):386

whether the model bias can be explained by the uncertainties in forcing data and observed 387

validation data, or if it comes from physical parameterizations (true model errors).  388

In this study, the model uncertainties due to large-scale forcing data are estimated 389

as twice of the model standard deviation (2-sigma uncertainty) using different large-scale 390

forcing data from all 90 3DCVA members listed in Table 1.  The uncertainties in the 391

MICROBASE cloud retrievals are estimated as 15% for LWC, 55% for IWC and 25% 392

for cloud fraction.  These numbers are based on the study by Zhao et al. [2014] in which 393

they perturbed key inputs and parameters in cloud retrieval algorithms and estimated 394

these uncertainties.  Limitations and caveats about the cloud retrievals will be discussed 395

later.396

Figure 8 shows the model bias of cloud fraction, LWC and IWC in time-pressure 397

profiles (right), and the vertical profiles averaged in the whole period (left).  The black 398

lines in the right panel highlight regions where model biases are larger than the 399

uncertainties from forcing data and observations:400

 
2 2SCAM5  MICROBASE 2 forcing obs    (6)401

where forcing is the 1-sigma uncertainty of SCAM5 simulations due to different forcing 402

data, and obs is the observation uncertainty specified above.  It is seen that SCAM5 403

overestimates high-cloud while underestimates low-cloud, consistent with its404

overestimation of IWC and underestimation of LWC. Most of these biases are 405



significantly larger than the total uncertainties from large-scale forcing data and 406

observations, indicating that these biases are due to the deficiencies of physical 407

parameterizations in the model.  For IWC, most of the model overestimation is within the 408

uncertainties from large-scale forcing data and observations.409

410

411

Figure 8: (right) SCAM5 model bias of cloud properties.  Blue color means model 412

underestimation while yellow/red means overestimation, with black lines circle out where model 413

bias is larger than the total uncertainties from large-scale forcing data and observations.  (left) 414

vertical profiles averaged during the whole period.  Black line is MICROBASE, red dashed line 415

is SCAM5.  From top to bottom: cloud fraction, LWC and IWC (IWC includes both cloud ice and 416

snow).417



418

The uncertainties of the cloud hydrometeor retrievals given above could be 419

underestimated.  Zhao et al. [2014] pointed out that when considering all assumptions 420

and for precipitating clouds, uncertainties could be larger than those given in this study.  421

The spread among different products may be much larger than the diagnosed 422

uncertainties [Zhao et al., 2012].  Later analysis will also show this large spread (Figure 423

10). Huang et al. [2012] suggests that different input data, different treatments of rain 424

contamination and mixed-phase clouds are mainly responsible for the large differences of 425

retrieved LWC.  426

Given the large uncertainties in the cloud retrievals, it is important to examine if 427

model errors shown in cloud properties are consistent with those exhibited in other 428

relevant fields. Figure 9 compares the LWP, outgoing long wave flux at TOA, total cloud 429

fraction (daytime mean) and surface downward shortwave flux (daily mean) between the 430

observations (ARMBE) and SCAM5 simulations. The standard deviations of model 431

simulations due to different forcing data are shown in the shaded area. The use of daily 432

averaging for the surface downward shortwave flux is to remove the strong diurnal cycle433

and the use of daytime averaging for the total cloud fraction is to make it consistent with 434

surface downward shortwave flux because there is no shortwave flux at nighttime. The 435

time variations of these variables are overall consistent with cloud fraction and 436

hydrometeors during this period.  437

438



439

Figure 9: Ensemble mean SCAM5 simulations (red line) with standard deviations due to different 440

large-scale forcing data (red shade) and observations from ARMBE (black).  From up to bottom:  441

LWP, TOA net longwave flux, total cloud fraction (daytime mean) and surface downward 442

shortwave flux (daily mean).  443

444

It can be seen that the LWP in SCAM5 is lower than the observed value during 445

most of cloud/precipitation events.  The simulated LWP (with standard deviation, same 446

as below) averaged during the whole IOP is 94.8±6.9 g m-2, comparing to the observed 447

191.3 g m-2. Note that LWC in MICROBASE has been constrained by the LWP at the 448

SGP central facility so the LWC and LWP are not independent. We therefore examine 449



the radiation fields at the TOA and surface, which are independent with the retrieved450

cloud properties.  451

For longwave flux at TOA, SCAM5 missed some cloud events on 10 and 14452

March, where longwave flux has a sharp decrease in the observations but is relatively flat 453

in the model.  During the whole IOP, SCAM5 has TOA longwave flux of 229.4±1.1 W 454

m-2, slightly larger than the observed 227.6 W m-2.  However, the model does not always 455

overestimate longwave flux at TOA. During times when SCAM5 has more high cloud 456

fraction than observations in Figure 8, it also underestimates longwave flux (on 3, 17 457

and19 March).  458

For total cloud fraction and surface downward shortwave flux, daily (daytime)459

averaging is used to smooth out some short-period cloud features. From 13 to 15 March, 460

the model overestimation of surface downward shortwave fluxes is consistent with the 461

underestimation of total cloud fraction. These consistencies between the biases of cloud 462

properties with biases of radiation fluxes give us more confidence in attributing model 463

biases to the deficiencies of physical parameterizations.464

4.3 Applicability of SCM results to GCM465

The above analysis of model biases is limited to one single IOP.  To understand 466

the applicability of the SCM results in this IOP to the GCMs climatologically and 467

globally, we compare the simulations of clouds in the global CAM5 with satellite cloud 468

retrievals C3M to examine if the biases in SCAM5 still exist in CAM5 GCM. 469

Figure 10 shows the climatological mean cloud fraction, LWC and IWC at SGP 470

site (or the nearest grid) from CAM5 (blue), C3M (red) and MICROBASE (black), 471



respectively.  For cloud fraction, both the C3M and MICROBASE data show that CAM5 472

overestimates high clouds and underestimates low clouds, which is consistent with 473

SCAM5 results discussed earlier. For LWC, the differences between the two 474

observations are too larger to draw a firm conclusion about the CAM5 GCM (note that 475

the x axis is in logarithm scale).  The reason of large LWC differences between C3M and 476

MICROBASE remains unclear.  One possible cause is the different assumptions used in 477

the retrieval algorithms, where C3M assumes all clouds are liquid (ice) phase when 478

retrieving LWC (IWC), while MICROBASE assumes cloud droplets number 479

concentration is constant (100 cm-3). The different angles of measurements could be 480

another reason, where C3M satellite radar is more affected by the high clouds, which 481

corresponds to the large LWC at ~200 to 300 hPa.  The CAM5 GCM is closer to the 482

C3M profile than to the MICROBASE data below 400 hPa.  For IWC, the differences 483

among the two observations and model are relatively small.  484

485

486

Figure 10: 4-year (July 2006 to June 2010) mean profiles of cloud fraction (left), LWC (middle) 487

and IWC (right) at SGP site or the closest grid.  Blue line is from CAM5 GCM, red line is from 488

C3M merged satellite retrieval, black line is from MICROBASE ground retrieval.489

490



491

Figure 11: 4-year (July 2006 to June 2010) mean total high- (top), middle- (middle) and low-492

(bottom) cloud fraction in CAM5 GCM (left) and C3M merged satellite retrieval (right).493

494

Despite the large uncertainties in cloud retrievals of LWC and IWC, the model 495

biases of the underestimation of low cloud fraction and overestimation of high cloud 496

fraction in SCAM5 are valid in the CAM5 GCM at SGP from using both satellite-based 497



and ground-based datasets.  Therefore, we only compare cloud fractions in CAM5 and498

C3M for the global distribution of clouds. The high-, mid- and low-cloud fractions from 499

CAM5 and C3M are shown in Figure 11.  CAM5 overestimates high-cloud especially in 500

mid- to high-latitude. For mid-cloud, it simulates more clouds in high-latitude but less in 501

the tropics.  For low-cloud, CAM5 significantly underestimates cloud fraction over 502

tropical oceans.  The global mean fraction of high-, mid- and low-clouds in CAM5 is 503

38.0%, 26.8% and 43.8%, respectively, comparing to 30.2%, 28.4% and 50.3% in C3M.  504

These model biases are overall consistent with SCM and GCM biases at SGP that were 505

described before.  506

507

5. Summary and Discussion508

Background data, error covariance matrix and constraint variables are three 509

important sources of uncertainties (elements) in 3DCVA to derive the large-scale forcing 510

data required by LES/CRM/SCM.  We described an ensemble approach of 3DCVA using 511

six background data, five error covariance matrices and three constraint variables 512

(precipitation), in total 90 members.  The ensemble approach quantifies the uncertainties 513

of the large-scale forcing data.  The results show that all the three elements of the 514

ensemble 3DCVA have considerable impact to the analyzed large-scale forcing data, 515

especially to the vertical velocity and advective tendencies. Among the three elements, 516

background data have the largest impact on the forcing data, while precipitation has 517

relatively larger impact to the horizontal moisture advection. 518



With the uncertainty from the large-scale forcing data calculated and the 519

uncertainty of observed clouds estimated, this study compared the simulated clouds in the520

SCAM5 with MICROBASE cloud retrievals. We found that SCAM5 overestimates high-521

clouds while underestimates low-clouds, and it underestimates LWC but overestimates 522

IWC slightly. It also misses some cloud events.  Most of these model biases are larger 523

than the uncertainty from large-scale forcing data plus uncertainty from observations, 524

indicating that these biases are “true” model errors.  These cloud biases are shown to be525

consistent with the model biases of surface and TOA radiative fluxes.  526

The applicability of the SCM results at the SGP in the March 2000 IOP to the 527

global model is examined by comparing CAM5 GCM results with the C3M satellite 528

retrievals. We show consistent model biases in cloud fraction: CAM5 overestimates high 529

clouds and underestimates low clouds. These results indicate that most of the GCM 530

biases are caused by physical parameterizations rather than large-scale dynamics, and that531

the SCM simulations forced by the ensemble large-scale forcing data can be used to 532

further diagnose the cause of model errors in its physical parameterizations.  533

While the ensemble forcing provides a way to estimate the uncertainties in the 534

large-scale forcing data, we point out that the specified uncertainties in the 3DCVA can 535

be improved. This is especially true for the uncertainties in the input data of the 536

constraint variables. The current method only uses uncertainties in the precipitation 537

constraint that is scaled against the best estimate precipitation. More sophisticated 538

specification requires knowledge of the spatial structure of the precipitation uncertainties 539

as well as uncertainties in other constraint variables. With this caveat in mind, we 540

believe the variationally constrained ensemble of large-scale forcing data described in 541



this paper can be used to more confidently identify and quantify model errors from 542

LES/CRM/SCM.  543
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